云顶7610线路检测

张巍

发布者:水利土木工程学院发布时间:2021-06-11浏览次数:2181

个人简历

基本信息

姓名:张巍               学历/学位:博士研究生/博士      

出生年月:19831月         职称:副教授

政治面貌:中共党员          家庭情况:已婚

电子邮件:zhangwei@scau.edu.cn       联系电话:13922426657


教育经历

19999~20036月,武汉大学,水利水电工程,学士

20039~20056月,武汉大学,水利水电工程,硕士

20069~20106月,武汉大学,水利水电工程,博士


工作经历

  ●20057~20157月,广东省水利电力勘测设计研究院,水工建筑高级工程师,有丰富的水工岩土工程设计经验。

  ●20157~20178月,中山大学,应用力学与工程系,岩土工程,博士后。

  ●20199~20209月,维也纳自然资源与生命科学大学,岩土工程研究所,访问学者。  

  ●20179~今,云顶7610线路检测,云顶7610线路检测,副教授,现任土木工程系主任。


个人简介

   云顶7610线路检测云顶7610线路检测副教授、硕士生导师、土木工程系主任,主要从事岩土工程灾害机理与数值模拟方面的教学和研究工作,主持广东省省级教学项目2项、校级教学项目2项,获校“青年教师教学优秀奖”1项,主持国家自然科学基金、广东省自然科学基金等纵向课题6项、横向课题20余项,发表学术论文60余篇,其中SCI论文30余篇(第一/通讯作者25篇、ESI高被引4) 、教学类SSCI论文1篇,主编教材1部,获中国大坝工程学会科技进步奖等科技奖励3项,以第一发明人授权发明专利3项,获软件著作权2项。具体如下:

 主持教学项目

[1] 云顶7610线路检测卓越乡村基建人才培养计划,广东省教育厅,30万元,2021

[2] 云顶7610线路检测联合培养研究生建设基地,广东省教育厅,2万元,2023

[3] 高水平研究生教材建设项目《岩土工程中的有限单元法》,云顶7610线路检测研究生教育创新计划2万元,2021

[4] 《地下工程计算机软件应用》,云顶7610线路检测课程思政示范课程,1万元,2022

 主持科研项目

[5] 越浪诱发海堤渐进破坏机理与粒子有限元模拟,国家自然科学基金项目面上项目,52万元,2023~2027年,主持

[6] 复杂根-土系统变形与破坏的物质点模拟方法研究, 广东省普通高校特色创新项目, 5万元, 2021~2023, 主持.

  [7] 裂隙岩体中高压隧洞内水外渗的机理与控制, 广东省自然科学基金, 10万元, 2018~2021, 主持. 

[8] 软弱围岩压力隧洞水-力耦合承载机理与计算理论, 广东省水利科技创新项目, 76万元, 2020~2022, 主持.

  [9] 广东省节水统计调查和管理制度研究,广东省水利厅, 54万元, 2021~2022, 主持.

[10] 抽水蓄能电站压力隧洞素混凝土衬砌研究, 广州市荔湾区科技计划, 170万元, 2012~2015, 主持.

 代表性论文(第一作者/通讯作者)

[1] Zhang W, Wu Z Z, Peng C, et al. Modelling large-scale landslide using a GPU-accelerated 3D MPM with an efficient terrain contact algorithm[J]. Computers and Geotechnics, 2023, 158: 105411.

[2] Yuan W H, Liu M, Guo N, Dai B B, Zhang W(*), et al. A temporal stable smoothed particle finite element method for large deformation problems in geomechanics[J]. Computers and Geotechnics, 2023, 156: 105298.

[3] Zou J Q, Yang F X, Yuan W H(*), Liu Y H, Liu A H, Zhang W(*). A kinetic energy-based failure criterion for defining slope stability by PFEM strength reduction[J]. Engineering Failure Analysis, 2023, 145: 107040.

[4] Zou J Q, Chen H, Jiang Y, Zhang W(*), et al. An effective method for real-time estimation of slope stability with numerical back analysis based on particle swarm optimization[J]. Applied Rheology, 2023, 33: 20220143.

[5] Yuan W, Zhu J, Liu K, Zhang W(*), et al. Dynamic analysis of large deformation problems in saturated porous media by smoothed particle finite element method[J]. Computer Methods in Applied Mechanics and Engineering. 2022, 392: 114724.

[6] Yuan W H, Liu M, Zhang X W, Wang H L, Zhang W(*), et al. Stabilized smoothed particle finite element method for coupled large deformation problems in geotechnics[J]. Acta Geotechnica, 2022, 18(3): 1215-1231.

  [7] Yuan W H, Wang H C, Zhang W(*), et al. Particle finite element method implementation for large deformation analysis using Abaqus[J]. Acta Geotechnica, 2021, 16(8): 2449-2462.

[8] Zhang W, Wang S, Wu Y, et al. Bifurcation analysis of shear band in sand under true triaxial conditions with hypoplasticity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(7): 934-949.

[9] Zhang W, Zou J Q, Bian K, et al. Thermodynamic-based cross-scale model for structural soil with emphasis on bond dissolution[J]. Canadian Geotechnical Journal, 2021, 59(1): 1-11.

[10] Wu Y, Liao J R, Zhang W(*), et al. Characterization of stress-dilatancy behavior for methane hydrate-bearing sediments[J]. Journal of Natural Gas Science and Engineering, 2021, 92: 104000.

[11] Yuan W H, Wang H C, Liu K, Zhang W(*), et al. Analysis of large deformation geotechnical problems using implicit generalized interpolation material point method[J]. Journal of Zhejiang University-Science A, 2021, 22(11): 909-923.

[12] Zhang W, Zou J Q, Zhang X W, et al. Interpretation of cone penetration test in clay with smoothed particle finite element method[J]. Acta Geotechnica, 2021, 16(8): 2593-2607.

[13] Zhang W, Liu M, Bian K, et al. Modelling the hydro-mechanical behaviour of high-pressure tunnel with emphasis on the interaction between lining and rock mass[J]. Computers and Geotechnics, 2021, 139: 104382.

[14] Zhang W, Zhong Z H, Peng C, et al. GPU-accelerated smoothed particle finite element method for large deformation analysis in geomechanics[J]. Computers and Geotechnics, 2021, 129: 103856.

[15] Yuan W H, Liu K, Zhang W(*), et al. Dynamic modeling of large deformation slope failure using smoothed particle finite element method[J]. Landslides, 2020, 17(7): 1591-1603.

[16] Liu A H, Zou J Q, Hu W, Liu M, Cong P T, Zhang W(*). Numerical simulation of mesodamage behavior of concrete based on material point method[J]. Advances in Civil Engineering, 2020, 2020: 1-14.

[17] Zhang W, Cong P, Bian K, et al, Estimation of equivalent permeability tensor for fractured porous rock masses using a coupled RPIM-FEM method[J]. Engineering Computations, 2019, 36(3): 807-829.

[18] Yuan W H, Zhang W(*), Dai B B, et al. Application of the particle finite element method for large deformation consolidation analysis[J]. Engineering Computations, 2019, 36(9): 3138-3163.

[19] Zhang W, Dai B B, Liu Z, et al. On the non-Darcian seepage flow field around a deeply buried tunnel after excavation[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(1): 311-323.

[20] Zhang W, Yuan W H, Dai B B. Smoothed particle finite-element method for large-deformation problems in geomechanics[J]. International Journal of Geomechanics, 2018, 18(4): 04018010.

[21] Zhang W, Dai B B, Liu Z, et al. Numerical algorithm of reinforced concrete lining cracking process for pressure tunnels[J]. Engineering Computations, 2018, 35(1): 91-107.

[22] Zhang W, Dai B, Liu Z, et al. Unconfined seepage analysis using moving kriging mesh-free method with monte carlo integration[J]. Transport in Porous Media, 2017, 116(1): 163-180.

[23] Zhang W, Dai B B, Liu Z, et al. Modeling free-surface seepage flow in complicated fractured rock mass using a coupled RPIM-FEM method[J]. Transport in porous media, 2017, 117(3): 443-463.

[24] Zhang W, Dai B B, Liu Z, et al. A pore-scale numerical model for non-Darcy fluid flow through rough-walled fractures[J]. Computers and geotechnics, 2017, 87: 139-148.

[25] Zhang W, Dai B B, Liu Z, et al. Modeling discontinuous rock mass based on smoothed finite element method[J]. Computers and Geotechnics, 2016, 79: 22-30.

著作/教材

[1] 岩土工程中的有限单元法, 北京: 中国水利水电出版社, 200千字, 2022, 主编.

[2] 农村饮水安全工程——设计、施工与管理, 北京: 中国水利水电出版社, 540千字, 2018 (排名第4, 副主编).

[3] Zhang W, Wang Y, Wang S. Predicting academic performance using tree-based machine learning models: A case study of bachelor students in an engineering department in China, Education and Information Technologies, 2022, 27: 13051-13066.

 奖励

[1] 水利水电工程滑坡预警关键技术与装备, 中国大坝工程学会科学技术奖, 二等奖, 2021(排第4).

[2] 广东清远抽水蓄能电站, 中国水利水电勘测设计协会全国优秀水利水电工程勘测设计奖, 金质奖, 2019(排第7).

[3] 惠州抽水蓄能电站工程调压井布置及体型优化研究, 广东省水利学会水利科学技术奖, 二等奖, 2012(排第2).

 发明专利

[1] 张巍, 杨方鑫, 刘爱华, . 一种研究根-土复合体强度特性的透明试验系统[P]. 广东省: CN114608969A, 2022-6-10.

[2] 张巍, 王誉, 丛沛桐. 一种研究根-非饱和土界面力学特性的试验装置及方法[P]. 广东省: CN114577608A, 2022-6-3.

[3] 张巍, 邹家强, 刘铭, . 基于微生物矿化修建生态灌渠的现场试验方法[P]. 广东省: ZL201910811169.8, 2021-8-24.

[4] 张巍, 邹家强, 林航, . 一种用于模拟基于微生物矿化修建生态渠道的试验装置及方法[P]. 广东省: ZL201910811297.2, 2021-6-18.

[5] 张巍, 刘铭, 刘爱华, . 一种浸水-潜蚀耦合作用对土体力学特性影响的试验装置及方法[P]. 广东省: ZL201910811170.0, 2021-4-13.

 软件著作权

[1] 基于隐式粒子有限元法的岩土工程水-力耦合大变形GPU并行数值计算软件, 2021.6, 中国, 2021.

[2] 结构非线性三维等参有限元软件, 2015.6, 中国, 2015SR096476.

◆ 代表性横向课题

[1] 广西大藤峡水利枢纽工程右岸滑坡体稳定性正反分析研究, 珠江水利委员会珠江科学研究院, 2022.

[2] 联石湾特大桥主墩施工方案对水闸防洪大堤安全影响评估, 保利长大工程有限公司, 2019.

[3] 云南省嵩明县干河水库扩建工程前期工程岩溶区爆破及帷幕灌浆施工对大湖山隧洞安全影响数值仿真专题研究, 云南省嵩明县水利局, 2019.

Baidu
sogou